

ST.FRANCIS DEGREE COLLEGE FOR WOMEN BEGUMPET
HYDERABAD-500016
(AN AUTONOMOUS COLLEGE OF OSMANIA UNIVERSITY)
DEPARTMENT OF NUTRITION

SEC-1	BAKERY SCIENCE SEMESTER-III	30 HRS
Module 1 - Introduction to baking		
Module 2 - Preparation of bread, cakes and biscuits		

- The syllabus contains two Modules. Paper should give equal weightage to all Modules. Five short questions with internal choice

SEMESTER - III

BAKERY SCIENCE

1. Course Description

Programme : B.Sc.

Course Code : U24/NUT/SEC/301

Course Type : SEC -1

No. of credits : 2

Max. Hours: 30

Hours per week : 2

Max. Marks : 50

2. Course Objectives

- To acquire in depth knowledge of the role of basic ingredients in preparation of bakery products .
- The students will be able to handle equipment used in the development of bakery products.

3. Course Outcomes

This SEC paper will help students to enhance their overall skills and in Course Content :

- Apply the knowledge of bakery science in development of products.
- Create hands -on training in the development of products.

4. Course Content**MODULE 1: INTRODUCTION TO BAKING**

(15 Hrs)

1.1 Ingredients & processes used for preparation : Cream cakes and sponge cakes, Shortcrust pastry, Breads, buns and pizza base, Cookies and biscuits

1.2 Characteristics of products : Product characteristics, common bakery faults and corrective measures

1.3 Bakery equipment- Types, selection, operations and maintenance

MODULE 2: PREPARATION OF BREAD, CAKES AND BISCUITS

(15 Hrs)

1. Standard preparation of Breads: White bread and Multigrain bread
2. Standard preparation of Cakes: Sponge Cake, Chocolate Cake
3. Standard preparation of Biscuits and Cookies: Chocochip cookies, Wheat biscuits
4. Preparation of Fondants and Icing of the cakes preparation

5. References

1. Dubey, S.C. 2007, Basic Baking, 5" Edition, Chankya Mudrak Pvt Ltd.
2. Raina et al., 2010, Basic Food Preparation- A Complete Manual, 4" Edition, Orient Black Swan Ltd.
3. Khanna K, Gupta S, Seth R, Mahna R, Reki T, 2004, The Art and Science of Cooking: A Practical Manual , Revised Edition, Elite Publishing House Pvt Ltd.

6. Syllabus Focus

a) Relevance to Local, Regional, National and Global Development Needs

Local /Regional/National /Global Development Needs	Relevance
Local	Preparation of bakery food on a small scale.

b) Components on Skill Development/Entrepreneurship Development/ Employability

SD/ED/EMP	Syllabus Content	Description of Activity
ED	Module-2	Preparation of Standardized recipes for Bakery

8. Course Assessment Plan

a) Weightage of Marks in Continuous Internal Assessments and End Semester Examination

COs	Continuous Internal Assessments - CIA (20%)	End Semester Examination - (30%)
CO1	CIA-1 MCQ	
CO2	CIA-2 Preparation of Fondants	End Semester examination

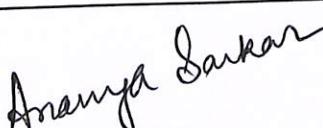
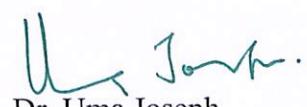
9.

Formative Assessment - FA (40%)	Summative Assessment - SA (60%)
CIA-20 marks Mini project/Assignment/ Problem solving/Case studies	End Semester exam-30 Marks

MODEL QUESTION PAPER

Course Code: U24/NUT/SEC/301

Marks:30



No. Of Credits: 2

Time: 1 Hrs

Answer any five

5X6=30

1. Corrective measures to be taken in bakery faults.
2. Role of Water in baking
3. Types of bakery equipments
4. Operation and maintenance of Oven
5. Procedure employed in preparation of buns
6. what are the common bakery faults
7. Role of Emulsions in bakery preparations
8. Parts and functions of egg beater

Prepared by	Checked & Verified by	Approved by
 Ms Ananya Sarkar Signature of the teaching faculty	 Ms. Tabitha Ramona Name and Signature of HoD	 Dr. Uma Joseph Name and Signature of Principal

SEMESTER - III

SKILL ENHANCEMENT COURSE I
BIOFERTILIZERS**1. Course Description**

Programme:	B. Sc	Max. Hours:	30
Course Code:	U24/BOT/SEC/301	Hours per week:	2
Type of Course:	SEC - 301	Max. Marks:	30
No. of Credits:	2		

2. Course Objectives

1. Describe the role of bio-fertilizers and their mechanism of action in agriculture.
2. Apply the basic concepts of nitrogen fixing bacteria and mycorrhizal fungi for isolation, characterization, mass inoculum production as bio-fertilizers.

3. Course Outcomes

After the successful completion of the course, the student will be able to:

CO 1: Describe the role of microorganisms as biofertilizers and interpretation of the crop response of Azotobacter and blue green algae in rice cultivation

CO 2: Analyze the types of mycorrhizal fungi and the role of VAM in growth and crop yield and apply the concepts of organic farming in various biodegradable waste recycling processes.

4. Course Content**Module I****15 hours**

- 1.1 General account about the microbes used as biofertilizer - *Rhizobium* - isolation, identification, mass multiplication, carrier-based inoculants, Actinorrhizal symbiosis. *Azospirillum*: isolation and mass multiplication – carrier-based inoculant, associative effect of different microorganisms.
- 1.2 *Azotobacter*: classification, characteristics- crop response to *Azotobacter* inoculum, maintenance and mass multiplication.
- 1.3 Cyanobacteria (blue green algae), *Azolla* and *Anabaena azollae* association, nitrogen fixation, factors affecting growth, blue green algae and *Azolla* in rice cultivation.

Module II**15 hours**

- 2.1 Mycorrhizal association, types of mycorrhizal association, taxonomy, occurrence and distribution, phosphorus nutrition, growth and yield – colonization of VAM – isolation and inoculum production of VAM, and its influence on growth and yield of crop plants.
- 2.2 Green manuring and organic fertilizers, Recycling of biodegradable municipal, agricultural and Industrial wastes – biocompost making methods.
- 2.3 Types and method of vermicomposting including field Application.

5. Reference Books

1. Dubey, R.C., 2005 A Textbook of Biotechnology S. Chand & Co, New Delhi.
2. Kumaresan, V. 2005, Biotechnology, Saras Publications, New Delhi.
3. John Jothi Prakash, E. 2004. Outlines of Plant Biotechnology. Emkay Publication, New Delhi.
4. Sathe, T.V. 2004 Vermiculture and Organic Farming. Daya publishers.
5. Subha Rao, N.S. 2000, Soil Microbiology, Oxford & IBH Publishers, New Delhi.
6. Vayas, S. C, Vayas, S. and Modi, H.A. 1998 Bio-fertilizers and organic Farming Akta, Prakashan, Nadiada

6. Syllabus Focus

a) Relevance to Local, Regional, National and Global Development Needs

Local /Regional/National /Global Development Needs	Relevance
Regional needs	Biofertilizers play a pivotal role in regional development by enhancing agricultural productivity, promoting sustainable farming practices, and fostering environmental conservation.

b) Components on Skill Development/Entrepreneurship Development/Employability

SD/ED/EMP	Syllabus Content	Description of Activity
SD	Module 1	Isolation and mass cultivation of blue green algae for preparing as biofertilizer
	Module 2	Implementing the process of biodegradation technique and preparation of bio compost and vermicompost

7. Pedagogy

S. No	Student Centric Methods Adopted	Type / Description of Activity
1.	Participative Learning	<ul style="list-style-type: none"> • Presentations and Group discussions • Preparation of biocompost and vermicompost using the dry leaves
2.	Problem solving	<ul style="list-style-type: none"> • Minor projects • Reviewing research articles on syllabus topics

8. Course Assessment Plan

a) Weightage of Marks in Continuous Internal Assessments and End Semester Examination

CO	Continuous Internal Assessments CIA -20%	End Semester Examination- 30%
CO1	CIA 2 – Test 1: MCQ's, Quiz test	Written Exam
CO2	CIA 2 – Test 2: MCQ's / Presentation / Seminar topics	

30 | DEPARTMENT OF BOTANY ST. FRANCIS COLLEGE FOR WOMEN, HYDERABAD

Basanti
Head of the Department
St. Francis College
Begumpet,

Sushma Mr. Jyoti M. Murti

A. S. Lakshmi
CHAIRPERSON
B.O.S. IN BOTANY
OSMANIA UNIVERSITY
HYDERABAD-500 003

b) Model Question Paper – End Semester Exam Theory

BIOFERTILIZERS

Course Code: U24/ BOT/ SEC/301

Max. Marks: 30

Time: 1 Hour

Answer any FIVE of the following

5 x 6 – 30

1. Justify the use of *Rhizobium sps.* for crop enhancement
2. Discuss the role of *Azotobacter* as biofertilizer
3. Explain the method of mass multiplication of *Azospirillum*
4. Recall the role of heterocyst in nitrogen fixation.
5. Outline the types of Mycorrhizae
6. Explain the process of inoculum production in VAM.
7. Assess the methodology of vermicomposting.
8. Categorize the various methods employed in making bio compost

Prepared by	Checked & verified by	Approved by
 Dr. S. Revathi Teaching faculty	 Dr. Basanti Chintapalli HoD	 Dr. Uma Joseph Principal

SEMESTER - III
CHEMISTRY PAPER - III

1. Course Description

Programme: B.Sc.
Course Code: U24/CHE/DSC/301
Course Type: DSC
No. of credits: 4

Max. Hours: 60 Hrs
Max. Marks: 100
Hours per week: 4 Hrs

2. Course Objectives

- To understand the nature and properties of d & f-block elements.
- To know the basic concepts of thermodynamics and to explain thermodynamic properties
- To classify organic molecules by their functional groups and identify fundamental properties associated with those functional groups
- To foster acquisition of knowledge on the concepts of solutions and phases of different systems.
- To acquire knowledge on qualitative analysis and apply practically.
- To learn structures of amino acids and proteins, synthesis and reactivity of amino acids.

3. Course Outcomes

CO1: Acquire knowledge about the properties of d & f-block elements and their separation techniques.

CO2: Describe the fundamental laws and concepts of thermodynamics.

CO3: Recognize functional groups in organic molecules and predict their reactivity through mechanisms.

CO4: Comprehend the concepts of Qualitative analysis, Phase rule, Amines and Amino acids.

Chairperson
Board of Studies in CI
Dept of Chemis
astmania University, Hyderabad

4. Course Content

MODULE I: INORGANIC CHEMISTRY 15 Hrs

d Block Elements 6 Hrs

Chemistry of d-block elements: Characteristics of d-block elements with special reference to electronic configuration variable valency, ability to form complexes, magnetic properties. Determination of magnetic susceptibility using Guoy's balance & catalytic properties. Stability of various oxidation states and Standard reduction potential. Comparative treatment of second and third transition series with their 3d analogues. Study of Ti, Cr and Cu triads. Titanium triad – electronic configuration and reactivity of +3 and +4 states – oxides and halides. Chromium triad – reactivity of +3 and +6 states. Copper triad – reactivity of +1, +2 and +3 states.

Chemistry of f-block elements 5 Hrs

Chemistry of Lanthanides: Position in periodic table, Electronic structure, oxidation state, ionic and atomic radii- lanthanide contraction- cause and consequences, anomalous behaviour of post lanthanides- complexation- type of donor ligands preferred. Magnetic properties- paramagnetism. Colour and spectra, f-f transitions –occurrence and separation – ion exchange method, solvent extraction. Chemistry of actinides- general features – electronic configuration, oxidation state, actinide contraction, colour and complex formation. Comparison with lanthanides.

Theories of bonding in metals 4 Hrs

Valence bond theory, Explanation of metallic properties and its limitations, Free electron theory, thermal and electrical conductivity of metals, limitations, Band theory, formation of bands, explanation of conductors, semiconductors n-type and p-type, extrinsic & intrinsic semiconductors, and insulators.

MODULE II: PHYSICAL CHEMISTRY 15 Hrs

Thermodynamics 15 Hrs

Definition of thermodynamic terms: system, surroundings, types of systems, intensive and extensive properties, state and path functions and their differentials. Thermodynamic processes, concept of heat & work. First law of thermodynamics-statement, definition of internal energy & enthalpy, Heat capacity, heat capacities at constant volume & pressure and their relationship. Joule's law, Joule Thomson coefficient and inversion temperature. Calculation of W, q, dU, dH for expansion of ideal gases under isothermal & adiabatic conditions for reversible process. Temperature dependence of Enthalpy- Kirchoff's equation.

Second law of thermodynamics, need for the law, different statements of the law. Carnot's cycle and its efficiency, Carnot theorem, thermodynamic scale of temperature concept of Entropy, Entropy as a state function, entropy changes in cyclic reversible and irreversible phase changes. Entropy as a function of V&T. Entropy as a function of P&T. Entropy change in physical processes.

Gibbs and Helmholtz functions: Gibbs function (G) & Helmholtz function (A) as thermodynamic quantities. A&G as criterion for thermodynamic equilibrium and spontaneity.

Their advantage over Entropy change. Gibbs equations and Maxwell relations. Variation of G with P, V&T.

MODULE III: ORGANIC CHEMISTRY

15 Hrs

Carbonyl Compounds

7 Hrs

Aldehydes and ketones: Preparation: from acid chlorides, nitriles and 1,3-dithianes. Reactions – Reaction with HCN, NaHSO₄, ROH – hemiacetal and acetal formation, NH₂-G derivatives- (a) NH₂ (b) RNH₂ (c) NHOH (d) PhNHNH₂ (e) 2,4-DNP. Mechanisms of Iodoform test. Aldol Condensation, Cannizzaro's reaction, Wittig reaction, Benzoin condensation, Knoevenagel condensation, Reduction reactions (no mechanism required) Clemmensen reduction and Wolff Kishner reduction. Meerwein - Ponndorf - Verley reduction. Oxidation: Baeyer – Villiger oxidation.

Carboxylic acids and their derivatives

5 Hrs

Carboxylic acids (aliphatic and aromatic)

Preparation: Acidic and Alkaline hydrolysis of esters (with mechanism). Hydrolysis of Nitriles. Reactions: (no mechanism required) Hell – Volhard – Zelinsky Reaction. Degradation of carboxylic acids by HunsDiecker reaction, Schmidt reaction (decarboxylation), Arndt – Eistert synthesis

Preparation: Acid chlorides, Anhydrides, Esters and Amides from acids and their interconversion. Reactions: Reformatsky Reaction (mechanism), Perkin condensation (mechanism).

Synthesis based on Carbanions

3 Hrs

Acidity of Alpha - Hydrogens, Preparation of Aceto-acetic ester by Claisen condensation and synthetic applications of Acetoacetic ester. A) Acid hydrolysis and ketonic hydrolysis. Preparation of i) monocarboxylic acids ii) dicarboxylic acids (iii) ketones (iv) Reaction with urea.

Malonic Ester-synthetic applications. Preparation of i) substituted mono carboxylic acids (ii) substituted dicarboxylic acids (iii). α , β . Unsaturated acids.

MODULE IV: GENERAL CHEMISTRY

15 Hrs

Phase Rule

5 Hrs

Statement and meaning of the terms – Phase, Component and Degrees of freedom, Gibbs Phase rule, phase equilibria of one component system – water system. Phase equilibria of two- component system – Solid-Liquid equilibria, simple eutectic – Pb-Ag system, desilverisation of lead. Solid solutions – compound with congruent melting point – Mg-Zn system and incongruent melting point – NaCl-H₂O system.

General Principles of Inorganic qualitative analysis (Semi-Micro Analysis)

3 Hrs

Anion analysis: Theory of sodium carbonate extract, classification and reactions of anions- CO_3^{2-} , Cl^- , Br^- , SO_4^{2-} , PO_4^{3-} , BO_3^{3-} , CH_3COO^- , NO_3^- .

Cation Analysis: Principles involved - Solubility product, common ion effect, general discussion for the separation and identification of group I individual cations (Hg_2^{2+} , Ag^+ , Pb^+)

with flow chart and chemical equations. Principle involved in separation of group II & IV cations.

General discussion for the separation and identification of group II (Hg^{2+} , Pb^{2+} , Bi^{3+} , Cd^{2+} , Sb^{3+}), III (Al^{3+} , Fe^{3+}), IV (Mn^{2+} , Zn^{2+}) individual cations with flow chart and chemical equations. Application of concept of hydrolysis in group V cation analysis. General discussion for the separation and identification of group V individual cations (Ba^{2+} , Sr^{2+} , Ca^{2+}) with flow chart and chemical equations. Theory of flame test. Identification of Group VI cations (Mg^{2+} , NH_4^+).

Amines (Aliphatic & Aromatic)

2 Hrs

Nomenclature & Classification into primary, secondary & tertiary amines & quaternary ammonium compounds. Preparation- 1. ammonolysis of alkyl halides, 2. Gabriel synthesis, 3. Hoffmann's bromamide reaction (mechanism), reduction of amides & Schmidt reaction. Physical properties & basic character – Comparative basic strengths of NH_3 , CH_3NH_2 , $(CH_3)_2NH$, $(CH_3)_3N$ & Aniline- Comparative basic strengths of aniline, N-Methylaniline & N,N-Dimethylaniline (in aqueous & non-aqueous media), steric effects & substituent effects. Use of amine salts as phase transfer catalysts. Chemical properties: a) alkylation, b) acylation c) Carbylamine reaction, d) Hinsberg separation, reaction with nitrous acid of $1^\circ, 2^\circ, 3^\circ$ (aliphatic & aromatic amines). Electrophilic substitution of aromatic amines- bromination & nitration, oxidation of aryl & tertiary amines, diazotization.

Diazonium salts

2 Hrs

Preparation & mechanism. Synthetic importance-replacement of diazonium group by OH, $X(Cl)$ -Sandmeyer & Gattermann reaction, by fluorine (Schiemann reaction), By iodine, CN, NO_2 , H & aryl groups. Coupling reaction of diazonium salts- with phenols and aromatic amines.

Amino acids

3 Hrs

Classification: Amino acids into acidic, basic and neutral amino acids with examples. Methods of synthesis: General methods of synthesis of alpha amino acids (specific examples – Glycine, Alanine, valine and Leucine) by following methods: a) From halogenated Carboxylic acid b) Malonic ester synthesis c) Strecker's synthesis. Physical properties: Optical activity of naturally occurring amino acids: L – configuration, irrespective of sign of rotation. Zwitterion structure – salt like character, solubility, melting points, amphoteric character, definition of isoelectric point. Chemical properties: General reactions due to amino and carboxyl groups – Lactams from gamma and delta amino acids by heating peptide bond (amide linkage).

5. References:

1. Malik, W.U., Tuli G.D., and Madan, R.D. (2004). *Selected Topics in Inorganic Chemistry*. Ram Nagar, New Delhi: S. Chand and Company.
2. Puri, B.R., Sharma, L.R., Kalia, K.C., (2006). *Principles of Inorganic Chemistry*. Pitampura, Delhi: Vallabh Publications.
3. Bahl, A., & Tuli. (2009). *Essentials of physical chemistry: A textbook for B. Sc. classes as per UGC model syllabus* (Rev. multicolored.). New Delhi: S. Chand.
4. Bahl, A. and Bahl, B.S. (2011). *A Textbook of Organic Chemistry*. Ram Nagar, New Delhi: S. Chand and Company.

5. Jain, M.K., and Sharma, S.C. (2011). *Modern Organic Chemistry*. Jalandhar, Delhi: Vishal Publishing Co.
6. Sharma, Y.R. (2012). *A Textbook of Complete Organic Chemistry*. Bangalore: Kalyani Publishers.
7. Principles of Inorganic Chemistry by Puri, Sharma and Kalia. Vishal Publications 1996.
8. Soni, P. (1979). *A textbook of physical chemistry* (11th ed.). New York: Academic Press.
9. Morrison R.T., Boyd, R.N., and Bhattacharjee S.K. (2011). *Organic Chemistry*. Delhi, Chennai, Chandigarh: Pearson.
10. Ferguson, L. (1966). *The Modern Structural Theory of Organic Chemistry*. New Delhi: Prentice-Hall of India Pvt.
11. Solomons, T., & Fryhle, C. (2008). *Organic chemistry* (9th edn.). Hoboken, NJ: John Wiley.
12. Sharma, Y.R. (2012). *A TextBook of Complete Organic Chemistry*. Bangalore: Kalyani Publishers.
13. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press 1999. Inorganic Chemistry Principles of structure and reactivity by James E. Huhey, E.A. Keiter and R.L. Keiter

Chairperson
Board of Studies in Ch...
Dept of Chemistry
Osmania University, Hyd-07,

ST.FRANCIS DEGREE COLLEGE FOR WOMEN BEGUMPET
HYDERABAD-500016
(AN AUTONOMOUS COLLEGE OF OSMANIA UNIVERSITY)
DEPARTMENT OF NUTRITION

DSC-III	FOOD SCIENCE SEMESTER- III	60 HRS
Module 1 - Cereals and Pulses Module 2 - Milk, Egg and Flesh Foods Module 3 - Vegetables and Fruits and Beverages Module 4 - Fats , Oils, Sugars and Spices		

- The syllabus contains four Modules. Paper should give equal weightage to all Modules.
Four long questions- One question per module with internal choice

SEMESTER - III

FOOD SCIENCE

1. Course Description

Programme: B.Sc

Course Code: U24/NUT/DSC/301

Course Type: DSC -3

No. of credits: 4

Max. Hours: 60

Hours per week: 4

Max. Marks: 100

2. Course Objectives

- To learn about the nutrient composition of food groups.
- To understand the basic concepts behind food science and food preparation.

3. Course Outcomes

On completion of the course the student will be able to:

CO1: Understand the functions of carbohydrates and estimation of energy values of food.

CO 2: Remember the role of essential and non-essential proteins and fats and its metabolism.

CO 3: Analyze the deficiencies of vitamins, and regulation of water and electrolyte balance.

CO 4: Remember the importance of minerals and fiber in a balanced diet.

4. Course Content

MODULE 1: CEREALS AND PULSES

(15 Hrs)

1.1 Introduction to Food Science –Definition, Cooking, Objectives of cooking, Preliminary preparations, Cooking Methods-Moist heat, Dry Heat and Fat as a medium of cooking, Microwave cooking.

1.2 Cereals and Millets – Structure, Nutrient composition, methods of processing of rice and wheat, principles of starch cookery, gelatinization, gluten formation, different products, and role of cereals in cookery.

1.3 Pulses and Legumes –Nutritive value, Processing-Milling, soaking, germination, Fermentation and parching, Anti-Nutritional factors –their elimination, cooking quality of pulses, Role of Pulses in cooking.

MODULE 2: MILK, EGG AND FLESH FOODS

(15 Hrs)

2.1. Milk: Composition and Nutritive Value , Processing of milk, changes in milk during heat processing and cooking, Milk products-Fermented and Non- Fermented products, Use of milk in cookery.

2.2. Fleshy Foods: Meat : Structure, nutrient composition and nutritive value, Post Mortem changes in meat –rigor mortis, aging ,tenderization and Curing , changes during cooking of meat, methods of cooking.

2.3. Fish: Classification, composition and nutritive value, Selection of fish, Spoilage, methods of cooking, and Storage.

2.4. Egg: Structure, Composition and Nutritive value of egg, Quality of egg Cookery, Preservation, uses of egg in cookery.

MODULE 3: VEGETABLES AND FRUITS AND BEVERAGES

(15 Hrs)

3.1. Vegetables: Classification, Composition and Nutritive value, Selection and preparation for cooking, Pigments –water soluble and water insoluble pigments, Organic acids, Enzymes and Flavor Compounds, methods and principles involved in cooking, changes during cooking.

3.2. Fruits: Classification, Composition and nutritive value, Pigments, Flavour constituents, Selection, Post Harvest changes, Ripening of Fruits, and Browning reaction – enzymatic and non- enzymatic, prevention of Browning.

3.3. Beverages: Classification, nutritive value, and milk based and fruit based beverages.

MODULE 4: FATS , OILS, SUGARS AND SPICES

(15 Hrs)

4.1. Fats and Oils: Composition and Nutritive value, Refining and Processing of Fats, Plasticity, Hydrogenation, Winterisation, Emulsions, Functions of fats and oils in cooking, Rancidity-types, mechanism and prevention, Effect of heat, Smoking point.

4.2. Sugars: Nutritive value, products, Sugar crystallization, Factors affecting sugar crystallization, stages of sugar cookery Crystalline and non- crystalline candies.

5. References

1. Mudambi R.S, Rao M.S, Rajagopal V.M, 2014, Food Science, Second Revised Edition, New Age International Publishers.
2. Srilakshmi B, 2015, Food Science, 5th edition, New age International Publishers.
3. Food processing and preservation, B. Sivasankar, 2002.
4. Potter N.N, Hotchkiss H.J, 2007, Food Science, 5th edition, CBS publishers and distributors Pvt Ltd.
5. Food, the chemistry of its components, 6th edition, Tom Coulte, 2014
6. Food Science – Norman N Potter, Joseph H. Hotchkiss, 5th edition, CBS Publishers & Distributors, New Delhi.
7. Food Facts and Principles – Shakuntala Manay, New Age International Publishers
8. Fruit and Vegetable Preservation – Principles & Practices – R P Srivastava, Sanjeev Kumar, 3rd edition, International Book Distributing Co., Lucknow.
9. Subbulakshmi G, Udupi AS, 2010, Food processing and preservation, New Age International Publishers.
10. Manay S, 2014, Food facts and principles, New Age Publications.

6. Syllabus Focus**a) Relevance to Local, Regional, National and Global Development Needs**

Local /Regional/National /Global Development Needs	Relevance
National	Learning about the composition and nutritive values of various Indian foods.
Global	Gaining knowledge about different methods that are applied all over the world for cooking

b) Components on Skill Development/Entrepreneurship Development/ Employability

SD/ED/EMP	Syllabus Content	Description of Activity
SD	1, 2, 3, 4	Enhance skills of the students in different cooking methods, to prepare various recipes

7. Pedagogy

S. No	Student Centric Methods Adopted	Type/ Description of Activity
1.	Presentation , Assignments	Participative Learning
2.	Quiz	Experiential Learning
3.	Group Discussion, Seminar	Participative Learning

8. Course Assessment Plan**a) Weightage of Marks in Continuous Internal Assessments and End Semester Examination**

CO	Continuous Internal Assessments CIA-50%	End Semester Examination-50%
CO1	CIA-1	
CO2	CIA-1	
CO3	CIA-2 Nutrition Album	Written Exam
CO4	CIA-2 Quiz/ cross word/MCQ	

SECTION A - INTERNAL CHOICE**5 Q X 10 M = 50 M**

Question Number	Question	Question	CO	BTL (Blooms Taxonomy Level)
1	Module 1	Describe the composition and nutritional value of cereals and millets and write about parboiling.	CO 1	I
2	Module 1	Elaborate the various methods to eliminate the anti-nutritional factors found in pulses and legumes	CO 1	VI
3	Module 2	Write about the structure and nutritional value of eggs. How are eggs graded and stored?	CO 2	I
4	Module 2	Explain in detail about the processing of milk. What are fermented and unfermented milk products?	CO 2	II
5	Module 3	Explain the Ripening of fruits. What is the browning reaction in fruits?	CO 3	II
6	Module 3	Write briefly about the nutritional value of fruits and vegetables. Explain the nutrient loss in vegetables and fruits during cooking and processing.	CO 3	II
7	Module 4	How are fats and oils classified? What is their nutritional significance?	CO 4	II
8	Module 4	What are condiments and spices? Mention their nutritional importance in detail.	CO 4	I

SECTION B - ANSWER ANY 5 OUT OF 7**5 Q X 2 M = 10 M**

(To compulsorily have ONE question from each module)

9	Module 1	Describe Germination.	CO 1	I
10	Module 2	Explain Rigor mortis.	CO 2	II
11	Module 3	Classify beverages.	CO 3	II
12	Module 4	What is Hydrogenation of Fats?	CO 4	I
13	Module 2	Describe Spoilage of milk.	CO 2	I
14	Module 1	Explain Moist heat methods.	CO 1	II

FOOD SCIENCE
PRACTICAL

Programme: B.Sc.
Course Code: U24/NUT/DSC/301/P
Course Type: DSC 3
No. of credits: 1

Max.Hours: 30
Hours per week: 3
Max.Marks: 50

Course Objectives:

1. Create awareness about the various methods of cooking foods
2. Gain knowledge on experimental cooking and preparation of different recipes.

Course Outcome:

On completion of the course the student will be able to:

- Understand the edible portion sizes and the various techniques of cooking the five basic food groups.
- Apply the knowledge of different recipe preparation and experimental cooking.

Practical Sessions**1) Basics of Cooking:**

- a) Food Groups- Grouping of Foods, discussion of nutritive value.
- b) Measuring Ingredients- methods of measuring foods and liquids.
- c) Edible Portion- determination of percentage of edible portion.

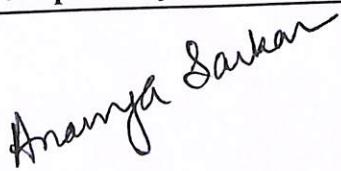
2) Experimental Cookery and Preparation of Recipes:

- a) Cereals-
 - i) Structure of different types of starch.
 - ii) Estimation of gluten in wheat flour
- b) Pulses –
 - i) Cooking of soaked and unsoaked pulses and germination.
- c) Milk –
 - i. Scum formation, effect of acid on milk proteins.
 - ii. Estimation of fat in different types of milk
- d) Determination of egg quality.
- e) Enzymatic browning reaction in fruits and vegetables
- f) Sugars- Stages of sugar cookery, caramelization.
- g) Fats and oils- to know smoking points of different oils.

3) Preparation of Recipes:

- a. Cereal & Pulse Preparation – Missi Roti & Khichdi
- b. Milk preparation - Sago kheer
- c. Egg preparation – French toast
- d. Vegetable Preparation – Aloo Tikki
- e. Fruit Preparation- Fruit Custard
- f. Fats & Oils- Palak Puri

FOOD SCIENCE
MODEL QUESTION PAPER
PRACTICAL


Course Code: U24/NUT/DSC/301/P

No. of credits: 1

Marks : 50
 Time: 2 Hrs

Answer the following

1. Prepare and display the given recipe	30 M
a) Ingredients and method of preparation	10 M
b) Calculation of nutrients (Energy, protein, Fat)	05 M
c) Display and Taste	15 M
2. Write in detail about the various stages of sugar cookery.	15 M
a) Draw a table and explain.	05 M
3. Record	05 M

Prepared by	Checked & Verified by	Approved by
 Ms Ananya Sarkar Signature of the teaching faculty	 Ms. Tabitha Ramona Signature of HoD	 Dr. Uma Joseph Signature of Principal

SEMESTER - III

SEC I: LAB REAGENTS AND LAB SAFETY IN CHEMISTRY

1. Course Description

Programme: BSc
 Course Code: U24/CHE/SEC/301
 Course Type: SEC
 No. of credits: 2

Max. Hours: 30
 Hours per week: 2
 Max. Marks: 50

2. Course Objectives

- To learn the safety rules and regulations to be followed while working in chemistry laboratory.
- To develop the skill of preparation of basic laboratory reagents.

3. Course Outcomes

This SEC paper will help students to enhance their overall skills in preparation and handling of various reagents in laboratory.

CO1: Gain knowledge and interpret various aspects while handling, and storage of various chemicals and calibrations with precautions.

CO2: Summarize the preparation of different lab reagents.

4. Course Content**Module- I: Laboratory Safety Rules and Regulations****15 Hrs**

General rules and regulations for lab safety: Minimizing Risks of Hazards, Personal Protective Equipment (PPE) - Hair, Dressing for the Laboratory, Eye Protection, Eyewash fountain, Gloves, Laboratory Protocols, Labelling Chemicals, Careful reading of labels Prevention of Inhaling Harmful Chemicals, Guide to Chemical Hazards, Chemical Spills etc. Accidents- use of fire extinguisher and first aid kit in the laboratory, safety symbols- Preparation of the charts by the students and display of charts in chemistry labs. Calibration of fractional weights, calibration of glassware - burette, pipette, standard flask, Normality/Molarity and specific gravity of concentrated acids – Preparation of dilute solutions (Numerical problems). Precautions to be taken in the preparation of dilute acids and bases and bases. Preparation of stock solutions of salts with specific examples. Properties of primary standard salt and preparation of standard solution. Good laboratory practices- maintenance of observation book records.

Module- 2: Preparation of Lab Reagents**15 Hrs**

Preparation of indicators and use of indicators in volumetric analysis- acid base titrations, redox titrations, precipitation titrations and complexometric titrations. Role of an indicator in detecting end point (Phenolphthalein, Methyl orange, Methyl-red, Potassium Chromate, Diphenylamine, EBT, Murexide, etc). Preparation of buffers – pH10 ammonical buffer and acetate buffer solutions. Preparation of commonly used reagents: Ammonium hydroxide solution, Ammonium molybdate reagent, Ammonium hydrogen phosphate solution, Bayer's reagent, Benedict's solution, Bromine water, Dimethylglyoxime reagent, 2,4-Dinitrophenyl hydrazine reagent, Eriochrome black-T reagent, Fehling solution, Ferric chloride solution, Ferrous sulphate solution, Iodine solution, Molisch's reagent, Nessler's reagent, Neutral FeCl_3 , Schiff's reagent, Silver nitrate solution, Sodium carbonate solution , Sodium

hydroxide (Caustic soda) solution, Starch solution, Tollen's reagent. (reference work and submission of assignments). Charts preparation depicting course content.

5. References

1. Vogel's Textbook of Quantitative Chemical Analysis, 5th edition.
2. Vogel's Textbook of macro and semimicro qualitative inorganic analysis. G. Svehla, 5th edition.
3. Chemistry Reagent Manual Prepared by Chemistry Department, SGTB Khalsa College under DBT's Star College Scheme, University of Delhi (Available: online)
4. American Chemical Society Safety in Academic Chemistry Laboratories 8th edition

81

Chairperson
Board of Studies in Chemistry
Dept of Chemistry
Osmania University, Hyd-07.

Head
Department of Chemistry
UCS, Osmania University
Hyderabad-500 007.

6. Syllabus Focus

a. Relevance to Local, Regional, National and Global Development Needs

Local /Regional/National /Global Development Needs	Relevance
Local	Knowledge of the basic rules for calibration of instruments and glassware.
Regional	Learn about the concepts involved in preparation of basic laboratory reagents.
National	Acquisition of new horizons in skill development and employability.
Global	A complete idea of rules, regulations and methods for preparation of reagents increases a student's inclination towards the subject.

b. Components on Skill Development/Entrepreneurship Development/Employability

SD/ED/EMP	Syllabus Content	Description of Activity
SD	Module 1 Laboratory Safety Rules and Regulations.	This enhances their skill development and employability in the field of chemistry, cosmetology and pharmacy.
EMP		
SD	Module 2 Preparation of Lab Reagents	To prepare and check the quality parameters of the various laboratory reagents.
ED		
EMP		

Chairperson
Ad. of Studies in Chemistry
Dept. of Chemistry
Jainan University, Hyd-07.

7. Pedagogy

S. No.	Student Centric Methods Adopted	Type / Description of Activity
1.	Field trips, Internship Opportunities	Students are taken to various institutes like IICT, HCU, IITH, ARCI, Pharma Patashala etc
2.	Seminars/ workshops/ research projects	Students are allowed to participate in seminars and workshops organized in and outside the college. They are encouraged to take up research projects.

8. Course Assessment Plan

a. Weightage of Marks in Continuous Internal Assessments and End Semester Examination

Continuous Internal Assessments CIA -40%	End Semester Examination- 60%
CIA- 20 Marks	Written Exam 30 Marks

Chairperson
Board of Studies in Chemistry
Dept of Chemistry
Osmania University, Hyd-07.

Head
Department of Chemistry
UCS, Osmania University
Hyderabad-500 007.

b. Model Question Paper- End Semester Exam

St. FRANCIS COLLEGE FOR WOMEN BEGUMPET HYDERABAD – 500 016
(An Autonomous College Affiliated To Osmania University)

CHEMISTRY
Model Paper
B.Sc. II - Semester III
SKILL ENHANCEMENT COURSE I
LAB REAGENTS AND LAB SAFETY IN CHEMISTRY

Time: 1 Hr**Course Code: U24/CHE/SEC/301****Max. Marks: 30****Answer any six questions****5 x 6 = 30 Marks**

1. Summarize the personal protective equipment. (L2)
2. Explain the preparation and properties of standard solutions. (L2)
3. Describe how calibration of glassware is carried on. (L2)
4. Outline the procedure to prepare 2,4-Dinitrophenyl hydrazine reagent, and Eriochrome black-T reagent. (L1)
5. Emphasize the role of Phenolphthalein and Diphenylamine indicators in detecting the end point of a reaction. (L3)
6. Write a note on ammonical and acetate buffer solutions. (L2)
7. Discuss the steps involved in the preparation of Tollens, Fehling's and Benedict's reagents. (L1)

[Handwritten signature]
Chairperson
Board of Studies in C
Dept of Chemis
Osmania University, Hyderabad

b. Model Question Paper- End Semester Exam

St. FRANCIS COLLEGE FOR WOMEN BEGUMPET HYDERABAD – 500 016
(An Autonomous College Affiliated To Osmania University)

CHEMISTRY

Model Paper

B.Sc. II - Semester III

SKILL ENHANCEMENT COURSE I

LAB REAGENTS AND LAB SAFETY IN CHEMISTRY

Time: 1 Hr

Max. Marks: 30

Course Code: U24/CHE/SEC/301

SECTION A - Answer any six questions			6 x 5 = 30 Marks	
Question Number	Question		CO	BTL
1	Module 1	Summarize the personal protective equipment.	CO 1	Level 2
2	Module 1	Explain the preparation and properties of standard solutions.	CO 1	Level 2
3	Module 1	Describe how calibration of glassware is carried on.	CO 1	Level 2
4	Module 2	Outline the procedure to prepare 2,4-Dinitrophenyl hydrazine reagent, and Eriochrome black-T reagent.	CO 2	Level 1
5	Module 2	Emphasize the role of Phenolphthalein and Diphenylamine indicators in detecting the end point of a reaction.	CO 2	Level 3
6	Module 2	Write a note on ammonical and acetate buffer solutions.	CO 2	Level 2
7	Module 2	Discuss the steps involved in the preparation of Tollens, Fehling's and Benedict's reagents.	CO 2	Level 1

Chairperson

Board of Studies in Chemistry

Dept of Chemistry

Osmania University, Hyd-07.

Department of Chemistry, St. Francis College for Women

St. FRANCIS COLLEGE FOR WOMEN, BEGUMPET, HYDERABAD-500016
 (An Autonomous College Affiliated To Osmania University)
FACULTY OF SCIENCE- DEPARTMENT OF CHEMISTRY
PRACTICAL SYLLABUS CBCS-2024
SEMESTER -III
QUALITATIVE ANALYSIS
 (Semi-micro Analysis)

Program: B.Sc.	Max. Hours: 20 Hrs
Course Code: U24/CHE/DSC/301/P	Max. Marks: 50
Course: DSC-3	Hours per week: 2 Hrs
No. of Credits : 1	

Course Objectives

- To study the systematic analysis of anions and cations in an inorganic salt mixture

Course Outcomes

CO 1: Apply the principles of common ion effect and solubility product in Semi micro qualitative analysis.

CO 2: Analyse and report ions in a mixture of salts based on their chemical reactions with group reagents

Qualitative Analysis - Semi micro analysis of mixtures: Analysis of two anions (one simple, one interfering) and two cations in the given mixture.

Anions: CO_3^{2-} , S^{2-} , SO_3^{2-} , CH_3COO^- , Cl^- , Br^- , I^- , NO_3^- , SO_4^{2-} , PO_4^{3-} , BO_3^{3-}

Cations: NH_4^+ , Pb^{2+} , Ag^+ , Bi^{3+} , Cu^{2+} , Cd^{2+} , Sn^{2+} , Fe^{3+} , Al^{3+} , Cr^{3+} , Co^{2+} , Ni^{2+} , Mn^{2+} , Zn^{2+} , Ba^{2+} , Sr^{2+} , Ca^{2+} , Mg^{2+}

References:

1. Svehla, G, *Vogel's Qualitative Inorganic Analysis*, Pearson Education, 2012.
2. Gurdeep R. Chatwal, *College Practical Chemistry-II*, Himalaya Publishing House, 2005.

Chairperson
 Head of Studies in Chemistry
 Dept of Chemistry
 Osmania University, Hyderabad.

6. Syllabus Focus

a. Relevance to Local, Regional, National and Global Development Needs

Local /Regional/National/ Global Development Needs	Relevance
Local	Knowledge of the basic principles of Chemistry to help in day-to-day life.
Regional	To Learn about basic concepts of d and f block elements
National	Application of principles of qualitative analysis in identifying Functional groups /in identifying anions and cations in Salt mixture
Global	Various organic synthetic procedures learnt by students incline them towards research, enable them to synthesize Novel organic compounds with Multiple application

b. Components on Skill Development/Entrepreneurship Development/ Employability

SD/ED/EMP	Syllabus Content	Description of Activity
SD	Module 2	Deriving equations, solving theoretical problems and interpreting results
ED	Module 4	Qualitative analysis of Metal ions is extensively in Analytical research laboratories in testing Purity of samples
EMP	Module 3	The various organic synthetic procedures learnt by students are widely applicable in industries thus increasing their employability

Chairperson
Board of Studies in Chemistry
Dept of Chemistry
Osmania University, Hyderabad-07

7. Pedagogy

S. No.	Student Centric Methods Adopted	Type / Description of Activity
1	Experiential	Experiments, attending seminars/workshops and field visits
2	Participative	Group discussion, quiz, presentations etc.
3	Problem solving	Solving problems in Physical Chemistry and elucidation of mechanisms in Organic Chemistry.

8. Course Assessment Plan

a. Weightage of Marks in Continuous Internal Assessments and End Semester Examination

CO	Continuous Internal Assessments CIA - 40%	End Semester Examination-60%
CO1	CIA1 -Written Exam	Written Exam
CO2	CIA 1 -Written exam	
CO3	CIA 2: poster/powerpoint presentation, collage, 3D model making, problem solving and quiz.	
CO4	CIA 2: poster/powerpoint presentation, collage, 3D model making, problem solving and quiz.	

Chairperson
Board of Studies in Chem
Dept of Chemistry
Sri Sathya Sai University, Hyd-07.

b. Model Question Paper - End Semester Exam

St. FRANCIS COLLEGE FOR WOMEN, BEGUMPET, HYDERABAD-500016

(An Autonomous College Affiliated to Osmania University)

Faculty of Science – Department of Chemistry

MODEL PAPER

B.SC. II YEAR SEMESTER -III

TIME: 2hrs

Course Code: U24/CHE/DSC/301

Max. Marks: 60

SECTION –A (Essay Questions)

I. Answer the following

4X10=40 Marks

1. a) What is Lanthanide contraction? Explain its Consequences. (CO1) L2 5M
 b) Explain Free electron theory of Metallic bonding. (CO1) L1 5M

OR

2. What are Transition elements? Explain the general properties with reference to Complex formation, magnetic properties and variable oxidation states. (CO1) L1 10M
 3. a) Derive an expression for Work done in reversible isothermal expansion of an ideal gas. (CO2) L3 5M
 b) Show that for one mole of an ideal gas $C_p - C_v = R$ (CO2) L3 5M

OR

4. Describe in detail the Carnot cycle. (CO2) L2 10M
 5. a) Elucidate the mechanism of Aldol condensation. (CO3) L2 5M
 b) Explain the Reaction mechanism for Wittig Reaction. (CO3) L2 5M

OR

6. a) Explain Perkin's Condensation with a suitable mechanism. (CO3) L2 5M
 b) What is Claisen condensation? Give the mechanism. (CO3) L2 5M
 7. a) Illustrate one component system with a phase diagram. (CO4) L2 5M
 b) What is the Common ion effect? Discuss its application in the separation of cations. (CO4) L2 5M

OR

8. a) Explain Hoffmann Bromamide reaction with Mechanism. (CO4) L2 5M
 b) How are valine and glycine synthesized by Strecker's synthesis? (CO4) L3 5M

SECTION – B (Short Answer Questions)

II. Answer any FOUR questions.

4×5=20 Marks

9. Describe the separation of lanthanides using the ion exchange method. (CO1) L2
 10. Prove that Joule Thomson effect is an isenthalpic process. (CO2) L3
 11. Calculate the work done in an isothermal reversible expansion of one mole of an ideal gas at 27°C from a volume of 10dm³ to 20dm³. (CO2) L4
 12. Explain Hell Volhard Zelensky (HVZ) reaction with suitable examples. (CO3) L2
 13. Define terms a) component b) degrees of freedom c) eutectic point. (CO4) L1
 14. What is a Solubility product? Explain why Zn²⁺ ions do not precipitate when H₂S is added in Group II. (CO4) L1

Chairperson

Board of Studies in Chemistry

Dept of Chemistry

3m40 DEPARTMENT OF CHEMISTRY, ST. FRANCIS COLLEGE FOR WOMEN, HYDERABAD.

Osmania University, Hyd-07.

b. Model Question Paper - End Semester Exam

St. FRANCIS COLLEGE FOR WOMEN, BEGUMPET, HYDERABAD-500016

(An Autonomous College Affiliated to Osmania University)

Faculty of Science – Department of Chemistry

B.SC. II YEAR SEMESTER -III

TIME: 2hrs

Max. Marks: 60

Course Code: U24/CHE/DSC/301

Credits: 4

SECTION A - INTERNAL CHOICE			4 X 10 M = 40 M	
Question Number	Question		CO	BTL
1	Module 1	a) What is Lanthanide contraction? Explain its Consequences. 5M b) Explain Free electron theory of Metallic bonding. 5M OR	CO 1 CO1	Level II Level I
2	Module 1	What are Transition elements? Explain the general properties with reference to Complex formation, magnetic properties and variable oxidation states. 10M	CO 1	Level I
3	Module 2	a) Derive an expression for Work done in reversible isothermal expansion of an ideal gas. 5M b) Show that for one mole of an ideal gas $C_p - C_v = R$ 5M OR	CO 2 CO2	Level III Level III
4	Module 2	Describe in detail the Carnot cycle. 10M	CO 2	Level II
5	Module 3	a) Elucidate the mechanism of Aldol condensation. 5M b) Explain the Reaction mechanism for Wittig Reaction. 5M OR	CO 3 CO 3	Level II Level II
6	Module 3	a) Explain Perkin's Condensation with a suitable mechanism. 5M b) What is Claisen condensation? Give the mechanism. 5M	CO 3 CO 3	Level II Level II
7	Module 4	a) Illustrate one component system with a phase diagram. 5M	CO 4 CO 4	Level II Level II

		b) What is the Common ion effect? Discuss its application in the separation of cations. 5M OR		
8	Module 4	a) Explain Hoffmann Bromamide reaction with Mechanism. 5M b) How are valine and glycine synthesized by Strecker's synthesis? 5M	CO 4 CO 4	Level II Level III

SECTION B – (Short answer questions)

SECTION B - ANSWER ANY 4 OUT OF 6

4 X 5 = 20 M

9	Module 1	Describe the separation of lanthanides using the ion exchange method.	CO 1	Level II
10	Module 2	Prove that Joule Thomson effect is an isenthalpic process.	CO 2	Level III
11	Module 2	Calculate the work done in an isothermal reversible expansion of one mole of an ideal gas at 27°C from a volume of 10dm ³ to 20dm ³ .	CO 2	Level IV
12	Module 3	Explain Hell Volhard Zelensky (HVZ) reaction with suitable examples.	CO 3	Level II
13	Module 4	Define terms a) component b) degrees of freedom c) Eutectic point.	CO 4	Level I
14	Module 4	What is a Solubility product? Explain why Zn ⁺² ions do not precipitate when H ₂ S is added in Group II.	CO 4	Level I

Sh

Chairperson
Board of Studies in Ch.
Dept of Chemistry
Osmania University, Hyd-07

Department of Chemistry, St. Francis College for Women

SEMESTER - III

TAXONOMY, MEDICINAL BOTANY & ECOLOGY

1. Course Description

Program:	B. Sc	Max. Hours:	60
Course Code:	U24/ BOT/ DSC/301	Hours per week:	4
Type of Course:	DSC-3	Max. Marks:	60
No. of Credits:	4		

2. Course Objectives

1. Explain various plant families, their economic importance and to encourage the sustainable cultivation and collection of medicinal plants of good quality.
2. Compare the two interacting components of the ecosystem in which organisms interact. (Biotic and abiotic) and explain the hierarchy formed by ecological systems.

3. Course Outcomes

After the successful completion of the course, the student will be able to:

- CO1: Examine the principles and methods of categorization and nomenclature while recognizing the significance of the herbarium techniques and role of ICBN.
- CO2: Recognize members of the major families of angiosperms by examining their diagnostic characteristics and economic significance, and analyze the most recent advances in taxonomy.
- CO3: Interpret the scope of Ethnomedicine; acquire an increased awareness of plants & plant products that are a part of daily life and describe the methods of evaluation of crude drugs.
- CO4: Describe the hierarchy of various ecosystems and summarise the basic concepts of production and community ecology

4. Course content**Module I: Systematics 10 Hours**

- 1.1 Introduction: Principles of plant Systematics, Systematics vs Taxonomy, types of classification: Artificial, Natural and Phylogenetic.
- 1.2 Systems of classification: Salient features and comparative account of Bentham and Hooker and Engler and Prantl. An introduction to Angiosperm Phylogeny Group.
- 1.3 Nomenclature and Taxonomic resources: An introduction to ICBN, Vienna code – a brief account. Herbarium: Concept, techniques and applications.

Module II: Taxonomic Families**17 Hours**

- 2.1 Systematic study and economic importance of plants belonging to the following families: Annonaceae, Capparidaceae, Rutaceae, Fabaceae, Caesalpiniaceae, Mimosaceae, Cucurbitaceae and Apiaceae.
- 2.2 Asteraceae, Asclepiadaceae, Lamiaceae, Amaranthaceae, Euphorbiaceae, Orchidaceae and Poaceae.
- 2.3 Current concepts in Angiosperm Taxonomy: Embryology in relation to taxonomy, cytotaxonomy, Chemotaxonomy and Numerical Taxonomy.

Module III: Medicinal Plants**18 Hours**

- 3.1 Ethnomedicine: Scope and interdisciplinary nature. Outline of Ayurveda, Siddha, Unani and Homoeopathic systems of traditional medicine.
- 3.2 Plants in primary health care: Common medicinal plants – Tippateega (*Tinospora cordifolia*), Tulasi (*Ocimum sanctum*), Brahmi (*Bacopa monnieri*), Karaka (*Terminalia chebula*), Kalabandha (*Aloe vera*), Turmeric (*Curcuma longa*), Nelausiri (*Phyllanthus amarus*), Amla (*Phyllanthus emblica*), Aswagandha (*Withania somnifera*), Sarpagandha (*Rauwolfia serpentina*). check
latest
sp. name
- 3.3 Adulteration of crude drugs and methods of identification – some examples. Plant crude drugs: types, methods of collection, processing and storage practices. Evaluation of Crude drugs.

Module IV: Ecology**15 Hours**

- 4.1 Plants and environment: Ecological factors- climatic (light and temperature), edaphic and biotic. Ecological adaptations of plants. Concept and components of Ecosystem. Energy flow, food chains, food webs, ecological pyramids.
- 4.2 Production ecology: Concepts of productivity, GPP, NPP, CR (Community Respiration) and secondary production, P/R ratio and ecosystems.
- 4.3 Community ecology: Frequency, density, cover, life forms, biological spectrum, ecological succession (Hydrosere and Xerosere). Population ecology: Natality, mortality, growth curves, ecotypes, ecads.

Basantli *Sulshame* *Meerab* *Parwinder* *A. S. S. I. C. L. L.*
 Head of
St. Francis College,
Begumpet.
 B. Sc. in BOTANY
OSMANIA UNIVERSITY
HYDERABAD-500 007

5. Reference Books

1. Pandey, B. P. 2007. *Botany for Degree Students: Diversity of Seed Plants and their Systematics, Structure, Development and Reproduction in Flowering Plants*. S. Chand & Company Ltd, New Delhi.
2. Stace, C. A. 1989. *Plant Taxonomy and Biostatistics (2nd Ed.)*. Edward Arnold, London.
3. Singh, G. 1999. *Plant Systematics: Theory and Practice*. Oxford and IBH, New Delhi.
4. Heywood, V. H. and D. M. Moore (Eds). 1984. *Current Concepts in Plant Taxonomy*. Academic Press, London.
5. Joshi, S. G. 2000. *Medicinal Plants*. Oxford and IBH, New Delhi.
6. Lad, V. 1984. *Ayurveda the Science of Self-healing*. Motilal Banarasidass, New Delhi.
7. Lewis, W. H. and M. P. F. Elwin Lewis. 1976. *Medical Botany. Plants Affecting Man's Health*. A Wiley Inter Science Publication. John Wiley and Sons, New York.
8. Hemalatha Acharya A. and Radha Krishnaiah M. 1996. *Medicinal Botany*. Kamala Nilayam.
9. George H.M. Lawrence. 1969, *Taxonomy of Vascular Plants*, Oxford & IBH Publishing Co., New Delhi.
10. G.L. Chopra. 1977. *Angiosperms (Systemic and Life Cycle)*: S. Nagin & Co, New Delhi.
11. Sivarajan V. V and I. Balasubramaniyam. 1994. *Ayurvedic drugs and their plant sources*. Oxford and IBH, New Delhi.
12. Rastogi R. R and B.N. Mehrotra. 1993. *Compendium of Indian Medicinal Plants*. Vol.I & Vol. II. CSIR, Publication and Information Directorate, New Delhi.
13. Kirtikar K.R. and Basu B.D. 1995. *Indian Medicinal Plants*. Vol.II. International Book Distributors, Booksellers & Publishers. Dehradun.
14. T. Pullaiah. *Medicinal Plants* in A.P., 2002. Regency Publications, Meerut.
15. H D Kumar, 2000. *Modern Concepts of Ecology*. Vikas Publishing House, New Delhi.
16. Odum E P, 1971. *Fundamentals of Ecology*. WB Saunders.
17. Pandat S N and S P Misra, 2011. *Environment and Ecology*. Ane Books Pvt. Ltd. New Delhi.

Basanti J.
Head of the Department
St. Francis College,
Begumpet.

S. Jithendra

M. Rajesh

H. M. M.

A. Srinivas Rao

CHAIRPERSON
MOS. IN BOTANY
OSMANIA UNIVERSITY
HYDERABAD-500 007

6. Syllabus Focus

a) Relevance to Local, Regional, National and Global Development Needs

Local /Regional/National /Global Development Needs	Relevance
Global development need	Understanding medicinal plants gives an idea about their traditional uses and also the need of conserving medicinal plant biodiversity, which is considered important on a global scale.

b) Components on Skill Development/Entrepreneurship Development/Employability

SD/ED/EMP	Syllabus Content	Description of Activity
SD	Module I: Systematics	Understanding the technique of Herbarium preparation for various plants
	Module II: Taxonomic families	Plant Identification using floral characters through flower dissection
	Module III: Medicinal plants	Identification of few medicinal plants with their morphological characters and evaluation of crude drugs through their physical and chemical characters

basant
Head of the Department
St. Francis College,
Begumpet.

Sushma Magadu
Harika
Aswatha Rao
CHAIRPERSON
B.O.S. IN BOTANY
OSMANI UNIVERSITY
HYDERABAD-500 007

7. Pedagogy

S. No	Student Centric Methods Adopted	Type / Description of Activity
1.	Participative Learning	<ul style="list-style-type: none"> • Presentations and Group discussions • Reading and gathering information from library
2.	Experiential Learning	<ul style="list-style-type: none"> • Field book preparation with flora in the college / Field trip • Herbarium preparation (25 twigs)
3.	Problem solving	<ul style="list-style-type: none"> • Research Projects • Reviewing research articles on syllabus topics

8. Course Assessment Plan

a) Weightage of Marks in Continuous Internal Assessments and End Semester Examination

CO	Continuous Internal Assessments CIA - 40%	End Semester Examination- 60%
CO1	CIA 2 – Test 1: MCQ's, Quiz test or subjective	
CO2	CIA 1 - Subjective	
CO3		Written Exam
CO4	CIA 2 – Test 2: MCQ's / Presentation / Seminar topics	

b) Model Question Paper – End Semester Exam Theory

TAXONOMY, MEDICINAL BOTANY & ECOLOGY

Course Code: U24/ BOT/ DSC/301

MAX MARKS: 60

Credits: 4

TIME: 2 hours

Note: This question paper consists of Section A and B. The answer to Section A and B must be written in the answer book given.

Section A (Long Essay Type)

I. Answer all Questions

Marks 4 x 10 - 40

1. Outline the Bentham and Hooker system of classification and list its merits and demerits
OR

2. Describe in detail and discuss about ICBN.

3. Explain in detail the general characters of the family Asteraceae.

OR

4. Explain Chemotaxonomy.

5. Describe the biological source, chemical constituents and medical significance of Turmeric and *Tinospora cordifolia*.

OR

6. Describe the various methods of evaluation of crude drugs.

7. Describe in detail ecological succession

OR

8. Explain the components of the ecosystem.

Section B (Short Essay Type)II. Write short notes on any FOUR of the following:

Marks: 4 x 5 - 20

9. What is Vienna code?
10. Describe the floral characters of Amaranthaceae.
11. Outline the traditional methods of Ayurveda.
12. Explain the energy flow in an ecosystem
13. Explain Numerical taxonomy
14. Recall the medicinal aspects of Sarpagandha

SECTION A - INTERNAL CHOICE				4Q X 10 M = 40 M
Question Number	Question	Question	CO	BTL (Blooms Taxonomy Level)
1	Module 1	Outline the Bentham and Hooker system of classification and list its merits and demerits.	CO 1	Level I, Level II
2	Module 1	Describe in detail and discuss about ICBN.	CO 1	Level I
3	Module 2	Explain in detail the general characters of the family Asteraceae.	CO 2	Level II
4	Module 2	Explain Chemotaxonomy.	CO 2	Level II
5	Module 3	Describe the biological source, chemical constituents and medical significance of Turmeric and <i>Tinospora cordifolia</i> .	CO 3	Level I
6	Module 3	Describe the various methods of evaluation of crude drugs.	CO 3	Level I
7	Module 4	Describe in detail ecological succession	CO 4	Level I
8	Module 4	Explain the components of the ecosystem.	CO 4	Level II

SECTION B - ANSWER ANY 4 OUT OF 6

4Q X 5 M = 20 M

(To compulsorily have ONE question from each module)

9	Module 1	What is Vienna code?	CO 1	Level I
10	Module 2	Describe the floral characters of Amaranthaceae.	CO 2	Level I
11	Module 3	Outline the traditional methods of Ayurveda.	CO 3	Level II
12	Module 4	Explain the energy flow in an ecosystem	CO 4	Level II
13	Module 2	Explain Numerical taxonomy	CO 2	Level II
14	Module 3	Recall the medicinal aspects of Sarpagandha	CO 3	Level I

B. S. S. S.
Head of the Department
St. Francis College,
Begumpet.

S. B. S.M. S. S.M. S. S.A. S. S. S.

D.G.S. IN BOTANY
OSMANIA UNIVERSITY
HYDERABAD-500 007

c) Question Paper Blueprint

Modules	Hours Allotted in the Syllabus	COs Addressed	Section A (No. of Questions)	Total Marks	Section B (No. of Questions)	Total Marks
1	10	CO 1	2	10 each	1	5
2	17	CO 2	2	10	1	5
3	18	CO 3	2	10	1	5
4	15	CO 4	2	10	1	5

9. CO-PO Mapping

CO	PO	Cognitive Level	Classroom sessions (hrs)
1	1, 5	Analyzing	10
2	1, 2, 5	Remembering	17
3	1 - 8	Understanding	18
4	1, 2, 5, 8	Understanding	15

Basanti
Head of the Department
St. Francis College,
Begumpet.

Sushma

Megha
H. M. M.

A. Sathya Laxmi

CHAIRPERSON
B.O.S. IN BOTANY
OSMANIA UNIVERSITY
HYDERABAD-500 007

TAXONOMY, MEDICINAL BOTANY & ECOLOGY

Practical Syllabus

1. Course Description

Programme:	B. Sc	Max. Hours:	30
Course Code:	U24/ BOT/ DSC/301/P	Hours per week:	2
Type of Course:	DSC-3	Max. Marks:	50
No. of Credits:	1		

2. Course Objectives

1. To explain the diversity of plant species and their classification according to taxonomic hierarchies.
2. To practice fieldwork and laboratory exercises to reinforce theoretical knowledge with practical skills.

3. Course Outcomes

After the successful completion of the course, the student will be able to:

CO 1: To identify unknown plant specimens using multiple forms of reliable evidence
 CO 2: Develop proficiency in native plant identification by observing their characteristics
 CO 3: To summarize the chemistry of plant components and their products so as to exploit their phytochemical nature.
 CO 4: To distinguish the various ecological adaptations in plants and their sampling methods.

4. Course Content

1. Systematic study of locally available plants belonging to the families prescribed in theory syllabus (Minimum of one plant in each family).
2. Demonstration of herbarium technique
3. Detailed morphological and anatomical study of medicinally important part(s) of locally available plants (a minimum of ten plants) used in traditional medicine.
4. Field visits to identify and collect ethno medicinal plants used by local tribes/folklore.
5. Preparation and submission of 25 specimens for evaluation during the practical examination.
6. Study of morphological and anatomical characteristics of plant communities using locally available plant species: Hydrophytes (*Eichhornia*, *Hydrilla*, *Pistia*, *Nymphaea*, *Vallisneria*); Xerophytes (*Asparagus*, *Opuntia*, *Euphorbia tirucalli*).
7. To determine a minimal quadrat area for sampling in the given simulation sheet
8. To estimate dissolved oxygen content of given water (polluted and unpolluted) sample using Winkler's method.

4. Model Question Paper – End Semester Exam Practical

TAXONOMY, MEDICINAL BOTANY & ECOLOGY

Course Code: U24/ BOT/ DSC/301/P

Time: 2 Hours

Maximum Marks: 50 Marks

Q I. Assign the specimens 'A' and 'B' to their respective families giving reasons.

Draw, describe and classify.

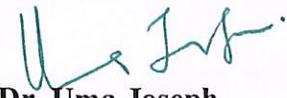
Scheme for valuation: (Description – 4; Diagram – 3; Floral diagram & floral formula – 2; Classification – 1)

2 x 10 – 20 Marks

Q II. Identify, draw and describe the given two spotter's 'C' and 'D'

2 x 5 – 10 Marks

Q III. Herbarium and Viva


3 + 2 – 5 Marks

Q IV. Project. (Conduct field work for a period of not less than 5 days under the guidance of a teacher and submit field report)

10 Marks

Q V. Record

5 Marks

Prepared by	Checked & verified by	Approved by
 Dr. S. Revathi Teaching faculty	 Dr. Basanti Chintapalli HoD	 Dr. Uma Joseph Principal